If it's not what You are looking for type in the equation solver your own equation and let us solve it.
49b^2+42b+8=0
a = 49; b = 42; c = +8;
Δ = b2-4ac
Δ = 422-4·49·8
Δ = 196
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{196}=14$$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(42)-14}{2*49}=\frac{-56}{98} =-4/7 $$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(42)+14}{2*49}=\frac{-28}{98} =-2/7 $
| 3(y+9)=8y+32 | | 9x2ª=0 | | 6w=-3w+18 | | -6j-14=-44 | | -11=-2+1/2x=12 | | 33/8-16/3=x | | 0.75x=-2=2.25x-12 | | -6x²+23x+4=0 | | -18=-9(8x+4) | | 9x2=0 | | 10+0.5x=15+.25x | | 10c+2c=64 | | 29=-5u+3(u+5) | | I=(2x8)-(3x2) | | 7+4x=-33 | | 60+6x+20x=30x | | 51/3-41/8=x | | -4v-2-8=34 | | a+1.20=3.5 | | 3+7x(-9)=66 | | 44=v/2 | | 1512=(120-2x)*x | | 6g+10=6g-20 | | 4x+2(25-x)=76 | | 8v=v+63 | | a+1.5=5.25 | | 7x+1+8x=1 | | −5x+5=15 | | (x+1)/(2x+3)=65x-1)/(7x+3) | | 3x-2+2x=5x+10 | | 12x=4x+29 | | 3x-2+2x=5x+1” |